Batch-Expansion Training: An Efficient Optimization Paradigm for Machine Learning
نویسندگان
چکیده
We propose Batch-Expansion Training (BET), a framework for running a batch optimizer on a gradually expanding dataset. As opposed to stochastic approaches, batches do not need to be resampled i.i.d. at every iteration, thus making BET more resource efficient in a distributed setting, and when disk-access is constrained. Moreover, BET can be easily paired with most batch optimizers, does not require any parameter-tuning, and compares favorably to existing stochastic and batch methods. We show that when the batch size grows exponentially with the number of outer iterations, BET achieves optimal Õ(1/ǫ) data-access convergence rate for strongly convex objectives. Experiments in parallel and distributed settings show that BET performs better than standard batch and stochastic approaches.
منابع مشابه
TensorFlow Agents: Efficient Batched Reinforcement Learning in TensorFlow
We introduce TensorFlow Agents, an efficient infrastructure paradigm for building parallel reinforcement learning algorithms in TensorFlow. We simulate multiple environments in parallel, and group them to perform the neural network computation on a batch rather than individual observations. This allows the TensorFlow execution engine to parallelize computation, without the need for manual synch...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملAn Efficient Bi-objective Genetic Algorithm for the Single Batch-Processing Machine Scheduling Problem with Sequence Dependent Family Setup Time and Non-identical Job Sizes
This paper considers the problem of minimizing make-span and maximum tardiness simultaneously for scheduling jobs under non-identical job sizes, dynamic job arrivals, incompatible job families,and sequence-dependentfamily setup time on the single batch- processor, where split size of jobs is allowed between batches. At first, a new Mixed Integer Linear Programming (MILP) model is proposed for t...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملOnline Learning for Interactive Statistical Machine Translation
State-of-the-art Machine Translation (MT) systems are still far from being perfect. An alternative is the so-called Interactive Machine Translation (IMT) framework. In this framework, the knowledge of a human translator is combined with a MT system. The vast majority of the existing work on IMT makes use of the well-known batch learning paradigm. In the batch learning paradigm, the training of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.06731 شماره
صفحات -
تاریخ انتشار 2017